- irreducible subvariety
- мат.неприводимое подмногообразие
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Nilpotent cone — In mathematics, the nilpotent cone of a finite dimensional semisimple Lie algebra is the set of elements that act nilpotently in all representations of In other words, The nilpotent cone is an irreducible subvariety of … Wikipedia
Intersection theory (mathematics) — In mathematics, intersection theory is a branch of algebraic geometry, where subvarieties are intersected on an algebraic variety, and of algebraic topology, where intersections are computed within the cohomology ring. The theory for varieties is … Wikipedia
Chow ring — In algebraic geometry, the Chow ring (named after W. L. Chow) of an algebraic variety is an algebraic geometric analogue of the cohomology ring of the variety considered as a topological space: its elements are formed out of actual subvarieties… … Wikipedia
Algebraic cycle — In mathematics, an algebraic cycle on an algebraic variety V is, roughly speaking, a homology class on V that is represented by a linear combination of subvarieties of V . Therefore the algebraic cycles on V are the part of the algebraic topology … Wikipedia
Spectrum of a ring — In abstract algebra and algebraic geometry, the spectrum of a commutative ring R , denoted by Spec( R ), is defined to be the set of all proper prime ideals of R . It is commonly augmented with the Zariski topology and with a structure sheaf,… … Wikipedia
Generic property — In mathematics, properties that hold for typical examples are called generic properties. For instance, a generic property of a class of functions is one that is true of almost all of those functions, as in the statements, A generic polynomial… … Wikipedia
Riemann–Hilbert correspondence — In mathematics, the Riemann Hilbert correspondence is a generalization of Hilbert s twenty first problem to higher dimensions. The original setting was for Riemann surfaces, where it was about the existence of regular differential equations with… … Wikipedia
Hilbert scheme — In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general scheme), refining the Chow variety. The Hilbert scheme is a disjoint… … Wikipedia
Hyperplane section — In mathematics, a hyperplane section of a subset X of projective space P n is the intersection of X with some hyperplane H mdash; in other words we look at the subset X H of those elements x of X that satisfy the single linear condition L = 0… … Wikipedia
Divisor (algebraic geometry) — In algebraic geometry, divisors are a generalization of codimension one subvarieties of algebraic varieties; two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil). These… … Wikipedia
Normal crossings — In algebraic geometry normal crossings is the property of intersecting geometric objects to do it in a transversal way. Contents 1 Normal crossing divisors 2 Normal crossings singularity 3 Simple normal crossings singularity … Wikipedia